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Abstract

We present a framework for ensuring convergence of sample average approximations
to stochastic optimization problems that include expectation constraints in addition
to per-scenario constraints.
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1. Introduction

Stochastic optimization problems with
mixed expectations and per-scenario con-
straints (SOESC) are ubiquitous in ap-
plications. As an example problem, con-
sider an independent system operator (ISO)
of an electric power network. In response
to bids from a set of generators, the ISO
agrees to purchase quantities of electric-
ity x ∈ Rn for a future period at prices
π0 ∈ Rn. In order to ensure participation
in the market and sufficient supply, the
prices π should represent forward prices
as the expectation (under a risk-neutral
measure) of future spot prices π(ω); so,
π0 − Eω[π(ω)] = z+ − z−, where π(ω)
satisfies an equilibrium condition for the
future market under a random outcome
ω and z+ and z− are non-negative vari-
ables satisfying a complementarity con-
dition on the initial purchase quantities.
Other forms of expectation constraints
arise from risk considerations, where, for
example, r(x, ω) is a risk function, such
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as excess loss, associated with outcome
ω that must be compensated in expecta-
tion with allocated capital, x0, as x0 −
Eω[r(x, ω)] = 0. Expectation constraints
also arise when the non-anticipativity of
first-stage decisions is given explicitly as
x − Eω[x(ω)] = 0. In the following, we
represent these constraints generally as
Eω [ψ(x, y(ω), ω)] = 0, where x repre-
sents the first-stage, or upper-level, de-
cisions and y(ω) represents the second-
stage, or lower-level, decision. In addi-
tion, the problems of the generators have
per-scenario constraints, resulting in a
SOESC problem.

Other examples of applications for-
mulated as SOESC problems include port-
folio optimization with conditional value-
at-risk objectives and constraints [3] and
stochastic receding horizon control of con-
strained systems [6].

This paper is concerned with conver-
gence of sample average approximation
(SAA) approaches for SOESC. While con-
vergence of SAA has been amply ana-
lyzed for per-scenario-only constraints [1,
7] and for expectations-only constraints
[2, 5, 8], a similar analysis for SOESC is
lacking. This paper takes an initial step
toward filling that gap.
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2. Formulating SOESC as mixed non-
linear equation – optimization prob-
lems

SOESC can be formulated as

min
x∈Kx,y(ω)∈Ky

Eω [φ(x, y(ω), ω)]

such that 0 = Eω [ψ(x, y(ω), ω)] .
0 = Γ(x, y(ω), ω), ∀ω ∈ Ω.

(1)
Here φ : Rn×Rm×Ω→ R, ψ : Rn×

Rm×Ω→ Rp, Γ : Rn×Rm×Ω→ Rq, are
differentiable functions, and Kx, Ky are
closed sets. We note that both inequal-
ity and complementarity constraints can
be formulated in this fashion, by an ap-
propriate choice of Kx and Ky.

We define the partial Lagrangian,
Lp(x, y(ω), ω, λ) =

φ(x, y(ω), ω) + λTψ(x, y(ω), ω).

With it, we define the following mixed
minimization–nonlinear equation problem:

0 = Eω [ψ(x, y(ω), ω)] ; (x, {y(ω)}) =
argmin

x∈Kx,y(ω)∈Ky

Eω [Lp (x, y(ω), ω, λ)]

s.t. Γ(x, y(ω), ω) = 0,∀ω ∈ Ω.
(2)

In some circumstances, the formula-
tion (2), which originates in a Lagrangian
relaxation, is equivalent to the formula-
tion (1). An example of sufficient con-
ditions for this to occur is presented in
Section 4. Should such an equivalence
be determined, then y(ω) satisfies, based
on the reversibility principle, the follow-
ing relationship:

ỹ(ω, λ, x) =
argmin
y(ω)∈Ky

Lp(x, y(ω), ω, λ)

s.t. Γ(x, y(ω), ω) = 0,∀ω ∈ Ω,
(3)

provided that, for each ω, λ, x in the neigh-
borhoods of interest, the solution exists
and is unique.

With this framework, the solution of
the minimization-nonlinear equation prob-
lem (2) can be restated as

Eω [ψ(x, ỹ(ω, x, λ), ω)] = 0
x = argmin

x∈Kx

Eω [Lp(x, ỹ(ω, x, λ), ω, λ)] .

(4)
Because y can be determined inde-

pendently for different ω, λ, x and since,

once those are determined, the remaining
variables are deterministic and finite di-
mensional, the problem (4) is approach-
able by SAA.

What we must now show is that, should
y be determined by SAA, then the result-
ing approximation of the data functions
for (4) approximates uniformly the so-
lution set for the minimization problem
and nonlinear equations, respectively, with
probability one.

3. Convergence of approximations
of mixed nonlinear equations –
optimization problems

Assumption We assume that the func-
tions fN , gN , f, g appearing in this sec-
tion are continuous in (x, λ).

Notation All sequences of functions
indexed by N depend on the stochastic
parameter ω, but we do not explicitly
represent that dependence (e.g. fN (x, λ, ω)
∼ fN (x, λ)).

The various convergence concepts used
here can be found in [7]. The following
concept is central to our work:

Definition [7, 6.86]: Uniform conver-
gence with probability one (UC w.p.1).
fN → f w.p. 1 if, for almost all ω and
for any ε, there exists N∗(ε, ω) such that

sup
x∈X,λ∈Λ

∣∣fN (x, λ)− f(x, λ)
∣∣ ≤ ε.

An important consequence of UC w.p.
1 is that, given a sequence (xN , λN ) →
(x∗, λ∗), we have that fN (xN , λN ) →
f(x∗, λ∗) w.p.1.

The first few results extend results in
[7] to the case of functions depending on
a parameter.

Lemma 1. Let x ∈ X, a compact set.
Let v(λ) = minx∈X f(x, λ) and let S(λ)
be the solution set of the same problem;
then (a) v(λ) is continuous; and (b) the
following holds

lim sup
λ→λ∗

sup
x∈S(λ)

inf
x∗∈S(λ∗)

|x− x∗| = 0.

Proof (a) Let λn → λ∗. Let now
xn be a sequence satisfying f(xn, λn) =
v(λn), and let x∗ be such that f(x∗, λ∗) =
v(λ∗). We then have that

v(λn) = f(xn, λn) ≤ f(x∗, λn) λ→λ
∗

→ v(λ∗)
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and thus lim sup v(λn) ≤ v(λ∗). In addi-
tion,

v(λ∗) = f(x∗, λ∗) ≤ f(xn, λ∗)
= v(λ) + f(xn, λ∗)− f(xn, λn).

By continuity of f , this implies v(λ∗) ≤
lim inf v(λn) which proves the claim of
part (a).

(b) Assume that this claim is not true.
That is, there exist ε > 0 and a subse-
quence λn → λ∗, such that
supxn∈S(λn) infx∈S(λ∗) ‖xn−x∗‖ ≥ ε. Since
xn ∈ X and X is compact, it has an
accumulation point x̂. Because of the
above relationship, we must have that
x̂ /∈ S(λ∗), and thus f(x̂, λ∗) > v(λ∗).
From an argument similar to the one in
part (a), and using the convergence of xn

to x̂, we obtain that f(x̂, λ∗) =
lim f(xn, λn) = lim v(λn) = v(λ∗) and,
thus a contradiction. 2

Lemma 2. Suppose that there exists a
compact set C such that

(i) ∅ 6= S(λ) ⊂ C;

(ii) f(x, λ) is finite valued and continu-
ous on C×Λ, where Λ is a compact
set;

(iii) f̂N (x, λ)→ f(x, λ) w.p. 1 as N →
∞, uniformly for x ∈ C.

Then, D(SN (λ), S(λ)) → 0 w.p. 1,
uniformly in λ. Here we denote by SN (λ)
is the solution set of minx∈X fN (x, λ), by
D(·, ·) the distance between two sets, and
by d(·, ·) the distance between a point and
a set.

Proof We assume, WLOG, that fN →
f for all ω, uniformly in (x, λ).

Assume that D(SN (λ), S) does not
converge to 0 w.p. 1 uniformly. Then,
there exist an ω and an ε and Nk → ∞
such that, for any k, there exists xNk ∈
SNk(λNk) such that

inf
x∈S(λNk )

∣∣xNk − x
∣∣ ≥ ε,∀k. (5)

Since Λ and C are compact, we can ex-
tract a subsequence Nkj

such that xNkj

and λNkj are convergent to x∗ and λ∗.
To simplify the notation, we relabel the
sequence Nkj as N .

From Lemma 1, forN sufficiently large,
we must have that, for λN is sufficiently
close to λ∗, D(S(λN ), S(λ∗)) ≤ ε

4 .
In turn this, in addition to (5), im-

plies that, for N sufficiently large, we
have

inf
x∈S(λ∗)

∣∣xN − x∣∣ ≥ 3ε
4
∀N,

which then implies that f(x∗, λ∗) > v(λ∗).
Since xN ∈ SN (λN ), we have that

fN (xN , λN ) < fN (x̃, λN ), where x̃ ∈ S(λ∗).
From the uniform convergence of fN , we
have that

f(x∗, λ∗) = lim fN (xN , λN )
≤ lim fN (x̃, λN )
= f(x̃, λ∗) = v(λ∗),

which is a contradiction. 2

We now investigate the stability of
systems of nonlinear equations.

Lemma 3. Let C be a compact set. We
define FN =

{
x|fN (x) = 0

}
∩C and F =

{x|f(x) = 0} ∩ C. If fN → f UC w. p.
1, then D(FN , F ∗)→ 0 w.p. 1.

Proof We prove this statement by
contrapositive. There then exists a se-
quence (which we denote WLOG the same
as the original sequence), such that there
exists xN ∈ C that satisfies FN (xN ) =
0, and d(xN , F ) > ε. Since C is com-
pact, we can assume (after extracting a
subsequence and relabeling) that xN →
x∗. Since d(xN , F ) > ε, it follows that
d(x∗, F ) > ε; but fN converges uniformly
and, therefore, 0 = fN (xN ) → f(x∗),
which is a contradiction. 2

The results of our lemmas are gen-
eral, but they have several caveats. For
example SN (λN ) may be empty in Lemma
2 and FN may be empty in Lemma 3,
and the result would still hold. What
we are really interested in is to approx-
imate the intersection S(λ) ∩ F , which
is not possible if either SN or FN are
empty with nonzero probability. To pre-
clude that possibility, we effectively need
a constraint qualification and perturba-
tion analysis, which will be addressed partly
in Section 4 and in future research.

3



Lemma 4. Consider the coupled mini-
mization – nonlinear equation problem

min
x∈X

f(x, λ); g(x, λ) = 0.

Denote by S(λ) the solution set of the
first problem and by F the solution set
of the second problem. Assume the fol-
lowing

i ∪λ{S(λ), λ} ∩ F has a unique so-
lution point (x∗, λ∗) ∈ CX × CΛ,
where the sets CX and CΛ are closed
and compact.

ii The sequences fN and gN converge
to f and g uniformly on C × CΛ.

iii The coupled problem

min
x∈X

fN (x, λ); gN (x, λ) = 0.

has a solution (xN , λN ) ∈ CX×CΛ

w.p. 1.

Then, (xN , λN )→ (x∗, λ∗) w.p. 1.
Proof Define by SNm(λ) the solution

set of the problem, minx∈X fN (x, λ), and
by FN the solution set of the problem,
gN (x, λ) = 0. By assumption (iii),

xN ∈ SNm(λN ), (xN , λN ) ∈ FN .

Take now an accumulation point of (xN , λN ),
which we denote by (x̃, λ̃) ∈ CX × Cλ.
Then, by Lemma 2 and using (ii), we
have that SN (λN ) → S(λ̃) w.p. 1 and,
thus, x̃ ∈ S(λ̃). Similarly, by Lemma 3
and using (ii), we have that (x̃, λ̃) ∈ F ,
and thus(

x̃, λ̃
)
∈ ∪λ{S(λ), λ} ∩ F.

From assumption (i), we must then have
that x̃ = x∗ and λ̃ = λ∗. Therefore,
(xN , λN ) has a unique accumulation point
and thus is convergent w.p. 1. 2

4. Example application of the the-
ory

We now show how the theory we have
developed in Section 3 can be applied
to SOESC. The case where Ω is infinite
requires too large a technical preamble,
so we limit ourselves to the case where

the event space is finite, that is, Ω =
{ω1, ω2, . . . , ωM}, with p(ωi) = pi > 0.
In addition, we assume that Kx and Ky

represent only nonnegativity constraints.
In that case, problem (1) can be rewrit-
ten as a deterministic problem:

min
x1≥0,y1(ω)≥0

∑M
i=1 piφ(x, y(ωi), ωi)

s.t. 0 =
∑M
i=1 piψ(x, y(ωi), ωi)

∀ωi ∈ Ω : 0 = Γ(x, y(ωi), ωi).
(6)

Here, y(ωi) ∈ Rn, x ∈ Rm. The map-
pings φ, ψ,Γ are twice continuously dif-
ferentiable mappings. We denoted by y1

and by x1 subsets of the vectors y and x.
To simplify our notation, we use the

following aggregate notation:

Y = (y(ω1), y(ω2), . . . , y(ωM ))
Y1 = (y1(ω1), y1(ω2), . . . , y1(ωM ))
z = (x, Y ), z1 = (x1, Y1)

g(z) =


Γ(x, y(ω1), ω1)
Γ(x, y(ω2), ω2)

...
Γ(x, y(ωM ), ωM )

 .

f(z) =
M∑
i=1

piφ (x, y(ωi), ωi)

h(z) =
M∑
i=1

piψ (x, y(ωi), ωi)

This results in the problem

min
z,z1≥0

f(z) s.t h(z) = 0, g(z) = 0. (7)

We assume that its (unique) solution is
z∗.

We define by I1, and, respectively, I,
the index set of the constraints z1 ≥ 0,
which are active at z∗ with respect to the
vector z1, and, respectively, z. That is,
z∗1,I1 = 0, z∗

1,Ī1 > 0, and z∗I = 0. Here,
we denote by Ā the complement of the
set A.

Let z∗ be the solution of the problem
(7). We assume that at z∗ we have the
following:

[A1] J(z) = [∇zg ∇zh]Ī has full column
rank at z∗.
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[A2] At z∗, we have that

uT∇2
zz

[
f + gTλ∗ + hTµ∗

]
u > 0,

∀u 6= 0 that satisfies∇zg u = 0 and
uI = 0.

Here λ∗ ∈ Rm, µ∗ ∈ Rp are the La-
grange multipliers, which satisfy

0 = ∇z
(
f + λ∗Th+ µ∗T g

)
Ī (z∗) (8)

and exist from assumption [A1]. As-
sumption [A1] is the widely encountered
linear independence constraint qualifica-
tion. Assumption [A2], however, is stronger
than the typical second-order condition,
in that the positive definiteness of the
Lagrangian is required over a larger space,
one that excludes the constraints∇zhu =
0.

Consider now the auxiliary problem

min
z
f(z) + h(z)Tλ s.t g(z) = 0. (9)

We immediately have the following result

Lemma 5. For λ = λ∗, the solution of
problem (9) is z∗. In addition, for ||λ− λ∗||
sufficiently small, (9) has a unique so-
lution, z(λ), which is continuous in λ.
With this notation, λ∗ is the only local
solution of the nonlinear equation h(z(λ)) =
0.

Proof It is immediately recognizable that
(8) are precisely the first-order optimal-
ity conditions for (9) and that [A1] and
[A2] are the constraint qualification and
second-order sufficient conditions for (9).
The continuity of z(λ) follows from the
stability under perturbation of nonlin-
ear programming solutions [4]. From any
solution of h(z(λ)) = 0 we can obtain
a point satisfying first-order optimality
conditions for (7). But under the condi-
tions here such points are locally unique
[4], which completes the proof. 2

Therefore, (z∗, λ∗) is the only local
solution of the following mixed minimiza-
tion – nonlinear equations problem.

z = argmin
z,z1≥0,g(z)=0

f(z)+h(z)Tλ; h(z) = 0.

(10)
Note that here, in the first minimization
λ is a parameter, and not a variable, and
h(z) = 0 is not enforced.

Lemma 5 then shows the equivalence
between the formulation (1) and (2).

The next step is to prove the equiva-
lence of (2) with (4). The key step is the
following lemma.

Lemma 6. Consider the problem

min
y1(ω)≥0

[φ(x, y(ω), ω)] + λT [ψ(x, y(ω), ω)]

s.t. 0 = Γ(x, y(ω), ω),
(11)

for ω one of ωi, i = 1, 2, . . . ,M . Then,
in a neighborhood around x = x∗ and
λ = λ∗, the above problem has a unique
solution y(x, λ, ω), which is continuous
in (x, λ).

Proof For ω = ωi, from (8) it follows
that, for λ = λ∗ and x = x∗, µ∗i , the com-
ponent of µ∗ corresponding to Γ(x, y(ωi), ωi)
is the Lagrange multiplier of Γ, which
satisfies the first-order conditions of (11).
Then, from [A1] and [A2], it follows
that (11) satisfies the constraint qualifi-
cation and strong second-order sufficient
conditions at y∗(ωi). From parametric
stability results of nonlinear program so-
lutions [4], the conclusion follows. 2.

We are now in position to state and
prove our main result.

Theorem 1. Assume that problem (6)
satisfies assumptions [A1] and [A2] at
z∗ = (x∗, y∗(ω1), y∗(ω2), . . . , y∗(ωM )). As-
sume that SAA applied to (6) results in a
solution whose x-value, xN , and λ-multiplier
λN (the multiplier of the expectation con-
straint), exist and are in a compact neigh-
borhood of x∗ and λ∗; then xN converges
to x∗ with probability one.

Proof Define by ỹ(x, λ, ω) the solution
of problem (11). Define X = {x|x1 ≥ 0}
and

f̃(x, λ) = E [φ(x, y(x, λ, ω), ω)
+ λTψ(x, y(x, λ, ω), ω)

]
g̃(x, λ) = E [ψ(x, y(x, λ, ω), ω)] .

From Lemma 5 (with h(z(λ)) = g̃(x, λ)),
it follows that the solution of (6) is the
unique local solution of the mixed optimi-
zation – nonlinear equation problem

min
x∈X

f̃(x, λ); g̃(x, λ) = 0.
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It immediately follows that assumption
(i) of Lemma 4 is satisfied. If i.i.d. sam-
pling is used, assumption (ii) of that lemma
follows as well [7]. Finally, we note than
any first–order point of the SAA prob-
lem attached to (6) is also a solution of
the SAA mixed optimization–nonlinear
equation problem, thus assumption (iii)
of Lemma 4 is satisfied. Lemma 4 can be
applied to obtain the conclusion. 2

Perhaps the most arguable assump-
tions of our approach are assumptions
[A2] and (iii) in Lemma 4. We point out
that [A2] is satisfied in the case where φ
is a strongly convex function in x and
y uniformly in ω and Γ and ψ are lin-
ear in x and y. We envision that the
assumption (iii) can be relaxed in that
the SAA mixed optimization–nonlinear
equation problem does not need to have
a local solution with probability one, but
only with a probability that asymptoti-
cally converges to one.

5. Conclusions and future work

In this work we have presented a con-
vergence framework for SAA approaches
for SOESC. Such problems have recently
been formulated in a variety of applica-
tions.

In future work, optimality conditions
of generic SOESC will be studied. This
will allow us to extend the SAA conver-
gence result to problems with infinite Ω
event spaces. It seems reasonable from
our analysis that all that is needed is the
existence of a Lagrangian with slightly
stronger second-order conditions (i.e., its
Hessian is positive definite on a slightly
larger space than for the sufficient con-
ditions). Nonetheless, the technical as-
pects are far beyond a short communica-
tion like this one.

Another interesting extension is to con-
sider a saddle point problem instead of
an optimization problem in Lemma 4,
which could remove the assumption of
the boundedness below of the optimiza-
tion problem (3). In turn, this would
avoid the need for strong second-order
conditions.
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